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Statistical Methods in Ophthalmology: An Adjustment for the 
Inttaclass Correlation between Eyes 

Bernard Rosner 

Channing Laboratory, Department of Preventive Medicine and Clinical Epidemiology, 
Harvard Medical School and Peter Bent Brigham Hospital Division of Brigham and 

Women's Hospital, 180 Longwood Avenue, Boston, Massachusetts 0211S, U.S.A. 

S UMMARY 

For the cases of normally- and binomially-distributed outcome variables, methods are presented for 
analyzing ophthalmologic data to which a person may have contributed two eyes worth of 
information, the values from the two eyes being highly correlated. A frequently-used method of 
analysis, where each eye is treated as an independent random variable, is shown to be invalid in the 
presence of intraclass correlation: it yields true p-values two to six times as large as nominal 
p-values when realistic assumptions are made about the degree of correlation between eyes. These 
results may be applicable to other medical specialities, such as otolaryngology, where highly- 
correlated replicate observations are obtained from individuals. 

1. Introduction 

In ophthalmologic studies, the fundamental unit for statistical analysis is often the eye 
rather than the person. Frequently, descriptive statistics are computed over distributions of 
eyes, and tests of hypotheses are constructed to compare such distributions, as for 
intraocular pressure measurements (Armaly, 1965), or for measurements of refractive 
error (Dunphy, Stoll and King, 1968; Sorsby et al., 1960). If only one eye is used for a 
given person in any such distribution, as might be the case in a clinical trial where for a 
given person one eye is used as the treated eye and the other as the control, then this 
practice is entirely appropriate and standard methods of estimation and hypothesis testing 
are valid. However, if the purpose is to compare two diferent types of people on some 
finding in an ocular examination, as would occur in a typical epidemiological investigation 
such as a comparison of intraocular pressures in persons in diferent age groups, then an 
individual contributes two eyes worth of information to such an analysis, their values 
being generally highly correlated. If the values are highly correlated, then methods of 
analysis in which each eye is considered as an independent random variable are not valid. 
It is the purpose of this paper to explore the consequences of the use of such methods of 
analysis on ophthalmologic data and to recommend an improved method which takes into 
account the intraclass correlation between eyes of the same person. 

2. Normally-Distibuted Outcome Variable 

2.1 Intraclass Correlation Model 

Suppose we wish to compare g groups of persons on some ocular finding y, where there 
are Pi persons in the ith group, i = 1, . . ., g; P--E Pi persons over all groups; and each 

Key words: Ophthalmology; Analysis of variance; Nested design; Intraclass correlation; Retinitis 
pigmentosa. 
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Table 1 
Nested ANOVA data layout under the intraclass correlation model 

Degrees 
of Expected 

Source of freedom mean 
variation Sum of squares (df) Mean square square 

Between groups E Pi (Yi ... -y )2 = SSG .... g-1 SSG/(g-1) = MSG fi Pi (ai - a)2/(g _ 1) 

+ (r2 + (C2/N) 
Between persons 

within groups (Yii.-yi .... )2= SSP p-g SSP/(P-g)=MSP (r+(ff2/N) 

Between eyes 
within persons E(Yijk-Yij.)2=SSE N-P SSE/(N-P)=MSE v2 

106 
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person contributes Nij eyes to the analysis where Nij = 1 or 2, i = 1, . . ., g, j= 1, e j j v Pi; 
and N-,fi, Nij = total number of eyes over all persons over all groups. An appropriate 
model for such a design is given by a nested mixed effects analysis of variance (ANOVA) 
model of the form: 

Yijk F + cxi + 13ij + eijk, i = 1, . . ., g, j = 1, . . ., Pi, k = 1, . . ., Nij, (2.1) 

where 3ij N(0, cr2j), eijk N(0, cr2) and ,u, {oei} are constantse Thus, the group eSect 
represented by {oei, i = 1, . . ., g} is considered to be a fixed effect, while the eSect of 
persons within groups represented by {13ij, i = 1, . . ., g, j= 1, . . ., Pi} and of eyes within 
persons represented by {eijkv i = 1, . . ., g, j= 1, . . . S Pi, k -1, . . ., Nij} are considered to be 
random eSects. The number of eyes contributed by diferent individuals might not be the 
same, due to either missing values or the presence in only one eye of the condition under 
study. 

An exact treatment of this problem is difficult due to the unbalanced nature of the 
design whereby diferent persons contributed either one or two eyes to the analysis. 
However, the method of unweighted means is considered a reasonable approximate 
method for analyzing such data when max(Nij-2-)/min(Nij 2-) < 2 (Searle, 1971, p. 367). This 
criterion will always be satisfied for ophthalmologic data since a person must contribute 
data from either one or two eyes to the analysis, and thus max(Nij-2-)/min(Nij-2)= 1/2 2- 
22 S 2. Thus, if we assume that each person contributes approximately N = 
[{E(1/Nij)}/P]-1 eyes to the analysis, then we have the nested ANOVA data layout 
given in Table 1, where Yij. = Sk Yijk/Nij, Yi.. = Ej Yij./Pi, y... = E PiYi../P. 

An appropriate test procedure to test the hypothesis Ho all oei are equal versus 
H1: some of the oei are unequal, is given by computing the test statistic A = MSG/MSP 
which follows an Fg 1P g distribution under Hov rejecting Ho if A>Fg 1P gl Of- 
100(1-of)% percentile of an Fg l p g distribution, and accepting Ho otherwise. The intraclass 
correlation p can also be estimated from Table 1 and is given by p=(r2l((r2(+(J2) where 
cr2-max{0, MSP-(MSE/N)}, cr2-MSE. If the above null hypothesis is rejected, then 
comparisons of specific groups can be accomplished using ordinary ANOVA t tests where 
for a comparison of Groups i1 and i2 we compute the test statistic ui1 i2= 
(Yi1. . - yi2. .)/{MSP(Pill + Pi-21)}-2 and reject if | ui1 i2l > tp g 1 2a, i1, i2 = 1, . . , g, i1 $ i2 Alter- 
natively, one of several multiple comparisons procedures can be used for this purpose. 
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2.2 Independence Model 

If we assume that two eyes from the same person are independent random variables, then 
we have an ordinary one-way ANOVA model of the form: 

Yijk F + ti + eIjk (2.2) 

where i = 1, ..., g, j = 1, ...., Pi, k = 1, ..., Nij, e*jk N(0, a@*2), and ,u*, {cx*} are con- 
stants. If we let Ni. = Ej N,j, i = 1, . . ., g, Y*. = Ej Ek YijklN.., y.*. = fi Ni y*/N, then the 
data layout for this model is as given in Table 2. 

An appropriate test procedure under the model (2.2), to test the hypothesis Ho all oe* 
are equal versus H1: some of the aezk are unequal, i = 1, . . ., g, is given by computing the 
test statistic A* = MSG*/MSE* which follows an Fg 1 N g distribution under Ho and 
rejectingH0ifA*> Fgl,Ngl. 

2.3 Pefformance of the Independence Model 1lnder the Assumption of Dependence between 
Eyes 

The question arises as to the distribution of the test statistic A* under the intraclass 
correlation model (2.1). We have studied this question under the simplifying assumption 
that Nij =2, i = 1, . . ., g, j= 1, . . ., Pi, i.e. each person contributes two eyes to the 
analysis. It is shown in the Appendix that this distribution is given by 

A *(g, P, p) {(1 + p) U/(g-1)}/0(1-p) V + (1 + p) W}/(2P-g)]' (2.3) 

where U x2 1, V x2, W x2_g, and U, V, W are independent random variables. We 
wish to study the true oe -level of the test procedure appropriate for (2.2), namely oe *(g, P, p, oe ) 
--pr{A*(g, P, p)>Fg_lS2p_gSl_o} under the model (2.1). The exact distribution of A* 
is difiicult to obtain for p < 1. However, since P is generally large relative to g, good lower 
and upper bounds to a* are given by approximating the distribution of the denominator 
of (2.3) by 2Xp/(2P- g) and 2X2-gI(2P- g), respectively, thus yielding the following: 

oe8(g, P, p, a)<oe*(g, P, p, oe)<oe*(g, P, p, a), (2.4) 

where 

o*(g, p, p, oe) = pr{Fg_1 p > (1 + p)(2P- g)Fg_l 2p_g l-a} 

and 

Oe *(g, P, p, ot) = pr{Fg_1 p_g > (1 + p)(2P _ g) Fg-1 2P-g l-a} 

Furthermore, for p = 1, it follows immediately from (2.3) that a* is given exactly by 

Table 2 
Nested ANOVA data layo7wt under the independence model 

Source of Degrees of 
variation Sum of squares freedom (df) Mean square 

Between groups E Ni.(yi* - y*s)2 = SSGe g-1 SSG*/(g - 1) = MSG* Within groups E E E (Yijk - yi* ......... )2 = SSEe ..... N-g SSE*/(N-g) = MSE* 

Statistical Methods in Ophthalmology 107 
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50,100,200,x,=0(.2)1 

p 

g p 25 50 100 200 X 

°t 1 °t2 °t 1 °t2 °t 1 °t) a 1 t2 t1 t2 

2 0.0 .051 .061 .050 .055 .050 .053 .050 .051 .050 .050 
0.2 .073 .086 .073 .079 .073 .076 .073 .075 .074 .074 
0.4 .095 .110 .096 .103 .097 .100 .097 .099 .098 .098 
0.6 .117 .133 .119 .127 .120 .124 .121 .123 .121 .121 
0.8 .139 .156 .141 .150 .143 - .147 .143 .145 .144 .144 
1.0 .177 .171 .168 167 .166 

3 0.0 .049 .071 .050 .060 .050 .055 .050 .052 .050 .050 
0.2 .078 .106 .080 .093 .081 .088 .082 .085 .082 .082 
0.4 .109 .142 .113 .129 .115 .123 .117 .120 .118 .118 
0.6 .141 .178 .147 .165 .150 .159 .152 .157 .154 .154 
0.8 .172 .213 .181 .200 .185 .195 .187 .192 .189 .189 
1.0 .246 .234 .229 .226 .223 

4 0.0 .047 .082 .049 .064 .049 .057 .050 .053 .050 .050 
0.2 .079 .126 .084 .106 .087 .097 .088 .093 .089 .089 
0.4 .116 .173 .125 .152 .129 .142 .131 .138 .134 .134 
0.6 .154 .219 .167 .198 .174 .189 .177 .185 .180 .180 
0.8 .194 .264 .210 .244 .218 .235 .223 .231 .227 .227 
1.0 .307 .288 .279 .275 .272 

5 0.0 .044 .095 .047 .070 .049 .059 .049 .054 .050 .050 
0.2 .078 .148 .087 .119 .091 .106 .093 .101 .095 .095 
0.4 .118 .204 .133 .174 .141 .160 .144 .154 .148 .148 
0.6 .162 .260 .183 .230 .194 .217 .199 .210 .204 .204 
0.8 .207 .313 .234 .285 .247 .272 .254 .266 .260 .260 
1.0 .364 .337 .326 .320 .314 

108 Biometrics, March 1982 

Table 3 
Bounds on exact p-values for A* under the zntraclass correlation model; a=.05, g=2(1)5, P=25? 

oe2(g, P, 1, oe). We have evaluated oe*(g, P, p, oe), oe*(g, P, p, a) for g - 2(1)5; P = 25, SO, 100, 
200, oo; p = 0(.2).8; a = .05, and oe8(g, P, 1, oe) for the same values of g, P and o. We used 
the IMSL subroutines MDFD and MDFI to compute the cumulative probability distribu- 
tion and the exact percentage points of the F distribution for finite P, and the correspond- 
ing subroutines MDCH and MDCHI for the chi square distribution for P=oo (Interna- 
tional Mathematical and Statistical Libraries, 1979). The results are given in Table 3. 

There is clearly a substantial discrepancy between the nominal and actual p-values with 
the discrepancy increasing as g and p increase and decreasing slightly as P increases. It is 
the author's experience that the estimated intraclass correlation between eyes in data 
derived from ocular examinations is at least .4; from Table 3 the true p-value is about two 
to three times the nominal level for p=.4 and three to six times the nominal level for 
p =1. 

Computations similar to those in Table 3 have been performed for nominal oe-levels of 
.01 and .001, with discrepancies between nominal and actual p-values that are at least as 
large as for oe=.05. Furthermore, computations similar to those in Table 3 have been 
performed for the case where each person contributed N eyes to the analyses, 1 < N< 2. 
The true and nominal oe-levels are still substantially different but the discrepancy becomes 
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- 

smaller as N approaches 1. For example, if g = 2, P= 25 and p = 1, then oe*= .177 for 
N = 2, .154 for N= 1.8, .129 for N= 1.6, .103 for N= 1.4, and .076 for N= 1.2. 

3. Binomially-Distributed Outcome Variable 

3.1 Theory 

Let Zijk = 1 if the kth eye of the jth person in the ith group is affected, and 0 otherwise, 
i = 1, . . ., g, j= 1, . . ., Pi, k = 1,2. We shall assume that 

pr(Zijk 1) = Ai, Pr(Zijk = 1 | Zij,3-k = 1) = RAi, (3.1) 
i = 1, . . ., g, j= 1, . . ., Pi, k= 1,2, for some positive constant R. The constant R is a 
measure of dependence between two eyes of the same person. If R = 1, then the two eyes 
are completely independent, while if RAi = 1, then the eyes are completely dependent. We 
wish to test the hypothesis Ho A1 = A2 = * * = Ag = A versus H1: some of the Ai are unequal. 

Let Pij = number of persons in the ith group with exactly j affected eyes, i = 1, . . ., g, 
j = 0,1,2. An appropriate test statistic for the above hypothesis is given by T - 
E (Ai-A)2/var(Ai) X2g-1 under Hov where Ai = 2(Pi1 + 2Pi2)/Pi, i-1, . . ., g, A = 
2E(Pil+2Pi2)lpv and we reject Ho if T>X2_l 1-a= 100(1 -a)% percentile of a Xg2-l 
distribution. If Zij1, Zij2 are independent random variables, i = 1, . . ., g, j= 1, . . ., Pi, then 
under Hov var(Ai)-2A(1-A)/Pi, i= 1, . . ., g, while if they are completely dependent, 
var(Ai)=A(1-A)/Pi, i=l,...,g. In general, under the model (3.1), we have that Ai= 
2-j vk ZijklPi, and thus, under Hov 

var(Ai ) = 4 var( Zijk )/Pi 
i k 

= 4E{var(zij l) + var(Zij2) + 2 cov(zij 1 ,zij2)}1Pi 
i 

=2{A(1-A)+(R-l)A2}/P 

= A (1-A)/(ePi), 

where e = 2A(1 - A)/4A(1 - A) + (R - 1)A2}. 
We interpret e as the 'effective number of eyes per person' since if each person 

contributed e independent eyes to the analysis, then var(Ai)=A(1-A)/(ePi). Note that 
e = 2 under complete independence (R = 1) and e = 1 under complete dependence 
(RA=1). We estimate e by e=2A(l-A)/{A(1-A)+(R-1)A2}, where A, R are the 
maximum likelihood estimators of A, R, respectively, under Ho. It is straightforward but 
tedious to show that A=A, R=4PEPi2/(Pil+2EPi2)2. Thus, an approximate level-a 
test for the above hypothesis is given by computing the test statistic 

T = [e/{A(1 - A)}] fi Pi(Ai - A)2, (3.2) 

which X2-1 under Hov and rejecting Ho if T>X2-1 1- 

3.2 Performance of the Independence Model under the Assumption of Dependence between 
Eyes 

A frequently-used procedure in this case would be to assume that the outcomes for the 
two eyes of an individual are independent random variables, in which case we would use 
the test statistic 

T2 = [2/{A ( 1-A )}] L Pi (Ai-A )2- (3.3) 
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Table 4 
Exact p-ralues for T2; g = 2(1)5, e = 1.0(0.2)2.0, a = .05 

. , . 

g 
1.0 1.2 1.4 1.6 1.8 2.0 

2 .166 .129 .101 .080 .063 .050 
3 .223 .166 .123 .091 .067 .050 
4 .272 .196 .140 .100 .071 .050 
5 .314 .223 .156 .108 .074 .050 

110 
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We wish to study the behaviour of T2 if the outcomes on the two eyes are in fact 
dependent, i.e. if the effective number of eyes per person, e, is less than 2. We see that, in 
this case, 

T2 = (2/e)[e/{A (1-A )}] fi Pi (Ai-A)2 (2/e)X2_l . 

Thus, the true oe-level for T2 is given by 

oe * = pr(T2 > X2-1 1-,) = prfx2-l > (el2)x2-1 1-a}. (3 4) 

We have evaluated oe* using the IMSL subroutines MDCH and MDCHI (International 
Mathematical and Statistical Libraries, 1979) for g = 2(1)5, e = 1.0(0.2)2.0, oe = .05, and 
present these results in Table 4. 

There clearly is a substantial discrepancy between the true and nominal p-values which 
gets larger as e decreases and g increases. If the two eyes are completely dependent 
(e = 1), then the true oe-levels are three to six times the nominal level of .05. 

4. Examples 

We now present examples of the use of these methods on a data set obtained from an 
outpatient population of 218 persons aged 20-39 with retinitis pigmentosa (RP) who were 
seen at the Massachusetts Eye and Ear Infirmary from 1970 to 1979. The patients were 
classified on the basis of a detailed family history into the genetic types of autosomal 
dominant RP (DOM), autosomal recessive RP (AR), sex-linked RP (SL), and isolate RP 
(ISO) for a study of differences between these four groups on certain measurements made 
in a routine ocular examination. In order to simplify the analysis, only one person from 
this age group was selected from each family, and if more than one affected person was 
available for analysis, then a randomly-selected affected person from this age group was 
chosen. Thus, the 218 persons were from 218 unique families. The details of the design of 
this study and, the procedures for genetic classification are given by Berson, Rosner and 
Simonoff (1980). 

We first present an analysis of the difference between groups for spherical refractive 
error using the methods of §2.1. The sample used for this analysis consists of the subgroup 
of 212 persons who had inforulation on spherical refractive error for at least one eye. Of 
these persons, 210 had information for both eyes while two had information for only one 
eye. All refractive errors were determined with retinoscopy after cycloplegia. 

We first present the analysis of the data on a per-person basis using the intraclass 
correlation model (2.1). There were 28 persons in the DOM group, 20 persons in the AR 
group, 18 persons in the SL group, and 146 persons in the ISO group. The ANOVA 
results are given in Table 5. 
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Table S 
ANOVA reslllts comparing spherical refractive error for different genetic types of RP ^sing the 

intraclass correlation model (2 1) 

(a) Overall ANOVA table 
Source of Sum of Mean 
variation squares df square F statistic p-value 

Between groups 133.59 3 44.53 3.68 013 
Between persons 

within groups 2518 45 208 12.11 
Within persons 80.49 210 0.383 

(b) Values of t statistics and p-values for comparisons of specific groups 
Estimated 
standard Number of 

Mean, erroru persons, Comparison group 
Group, i Yi {MSP/Pi}9 Pi DOM AR SL ISO 

DOM -0.127 0.658 28 - 0.941 3.259 1.350 
(NS) (p=.001) (NS) 

AR -0.831 0.778 20 2.183 0.013 
(p=.030) (NS) 

SL -3.299 0.820 18 - -2.826 
(p = .005) 

ISO -0.842 0.288 146 

Statistical Methods in Ophthalmology lll 

There was a significant difference between the refractive errors of the four groups 
(p=.013). We then performed t tests as given in §2.1 for comparing specific pairs of 
groups. The results were that the overall significant difference in Table 5 could be wholly 
attributed to significant differences between SL and the other three groups. The estimated 
intraclass correlation over all groups was .969! 

We now present the analysis of the data on a per-eye basis using the independence 
model (2.2). There was a total of 422 eyes, comprised of 54 eyes in the DOM group, 40 
eyes in the AR group, 36 eyes in the SL group and 292 eyes in the ISO group. The 
ANOVA results are presented in Table 6. 

The was a highly significant difference between the refractive errors of the four groups 
(p = 00026). The comparable p-value in Table 5 (.013) representing the overall compari- 
son of groups was 50 times as large as this p-value. We also performed standard one-way 
ANOVA t tests comparing specific pairs of groups. All the significant comparisons in 
Table 5 became considerably more significant when assessed on a per-eye basis in Table 6. 
Furthermore, one nonsignificant comparison between the DOM and ISO groups when 
assessed on a per-person basis in Table 5 became significant (p = .016) when assessed on a 
per-eye basis in Table 6. 

We next present an analysis of the difference between groups for best corrected Snellen 
visual acuity (VA) using the methods of §3.1. An eye was considered affected if VA was 
20/50 or worse, and normal if VA was 20/40 or better. The sample used for this analysis 
consists of the subgroup of 216 persons out of the sample of 218 persons each of whom 
had complete informatiorl for VA on both eyes. 

The data were first analyzed on a per-person basis using the model (3.1). The 
distribution of the number of affected eyes for the persons in each genetic type is given in 
Table 7. 
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Table 6 
ANOVA results comparing spherical refractzve error for different genetic types of RP using the 

independence model (2.2) 

(a) Overall ANOVA table 
Source of Sum of Meal] 
variation squares df square F statistic p-value 

Between groups 297.64 3 99.21 8.45 .00026 
Within groups 4906.83 418 11.73 

(b) Values of t statistics axld p-values for conlparisons of specific groups 
Estimated 
standard Number of 

Mean, crror, eyesg Comparison group 
Group, i Yi (MSE8/Ni.)2 Ni. DOM AR SL ISO 

DOM +0.386 0.466 54 1.704 4.999 2.421 
(NS) (p <.001) (p - .016) 

AR -0.831 0.542 40 - 3.135 0.018 
(p=.002) (NS) 

SL -3.299 0.571 36 -4.059 
(p < .001) 

ISO -0.842 0.201 292 

Table 7 
Distribution of the number of afl^ected eyes for 

persons in each genetic type 

Pio Pil Pi2 Pi Ai 

DOM 15 6 7 28 .357 
AR 7 5 9 21 .548 
SL 3 2 14 19 .789 

ISO 67 24 57 148 .466 

92 37 87 216 .488 

R - 1.688, e -1.207, 

T - {1.207/(.488 x .512)} E Pi (Ai - .488)2 
=ll.36 X32, i=l 

p - .010 

112 Biometrics, March 1'982 

We find that the effective number of eyes per person is 1.207 and there is an overall 
significant difference between the proportion of affected eyes in the four groups (p- 
.010). Standard methods for decomposition of chi square (Maxwell, 1961, p.52) show that 
this overall diflerence can be completely attributed to differences between the SL group 
and each of the other three groups. 

The data were then analyzed on a per-eye basis assuming independence between eyes, 
using the model (3.3). The test statistic for the overall comparison of groups is then_ 

T2 = [2/{A (1-A)}] fi Pi (Ai-A)2-18.82 X3, p = .00030. Nus, the true p-value (.010) is 

approximately 30 times as large as the nominal p-value (.00030). If we use standard 
methods of decomposition of chi square, then we find that this overall difference can be 
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completely attributed to differences between the SL group and the other groups. How- 
ever, the p-value for this comparison is again much smaller (X1 = 15.11, p = .00010) when 
the data are analyzed on a per-eye basis, than when they are analyzed on a per-person 
basis (X2 - 9.12, p = .0025). Finally, in this example, a person who provides two eyes to 
the analysis is contributing approximately 1.2 independent eyes worth of information! 

5. Discussion 

We have presented models for normally- and binoInially-distributed outcome variables 
which can be used to compare groups of persons on some finding in an ocular examination 
in which each person contributes two eyes worth of information to the analysis, the values 
of which may be highly correlated. It is shown that standard methods of analysis whereby 
the data are analyzed as if two eyes from the same person are independent random 
variables are not valid and can result in p-values which are from two to six times the 
nominal level. This method should probably never be used if the intraclass correlation 
between eyes, p, is at least .4 in the normally-distributed case, or if the effective number 
of eyes per person, e, is not greater than 1.6 in the binomially-distributed case. Note that 
in our two examples p=.969 for spherical refractive error and e = 1.208 for best 
corrected Snellen visual acuity of 20/50 or worse. 

Another method of analysis that has been discussed is to tabulate results separately for 
the left and right eye and compare results (Ederer, 1973). This method is valid but will be 
less efficient than the methods described here which combine information over both eyes 
in the analysis. 

The results in this paper have been discussed specifically in terms of data derived from 
an ocular examination. However, these results may be applicable to the analysis of data 
from other areas of medicine such as otolaryngology, where highly-correlated observations 
are obtained from two ears of an individual and it is desirable to use all the information in 
the analysis. Furthermore, it would be desirable to extend these methods to the case 
where there are more than two highly-correlated observations for a given individuaS. 
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R ES UME 

Dans le cas de variables resultats de distribution normale ou binomiale, on presente des methodes 
pour analyser des donnees ophtalmologiques pour lesquelles une personne peut avoir fourni de 
l'information sur ses deux yeus, les valeurs obtenues a partir des deux yeux etant fortement 
correlees. On montre qu'une methode d'analyse couramment utilisee, ou chaque oeil est considere 
comme une variable aleatoire independante, est invalidee par la presence de correlations intraclas- 
ses: elle fournit des vraies valeurs de p deux a six fois aussi grandes que les valeurs nominales de p 
quand on fait des hypotheses realistes sur le degre de correlation entre les yeux. 

Ces resultats sont applicables a d'autres specialites medicales, telles que l'otorhinolaryngologie, ou 
l'on obtient des sujets des observations repetees hautement correlees. 
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APPEND IX 

Derivation of the Distribution of A* under the Intraclass Correlation Model 

It follows immediately from (2.1) that, under H,,, 

MSGe (2ff + C2) U/(g-1), 

where U X2g_1. We can write 

MSEe - { fi fi (Yijk-y-ij.)2 + 2 E E (Yij - Yi. )2}/(2P-g) 
{ff2 V + (2ff2 + C2) W}/(2P-g), 

where V X2p, W X2p_g and U, V, W are independent random variables. Thus, upon reparametriz- 
ing Ae in terms of p=ffff/(ffff+ff2) we have that 

Ae = MSG*/MSE8 {(1 +p)U/(g-1)}/[{(1-p)V+(1 +p)W}/(2P-g)]. 
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